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Spiral wave propagation in oscillatory media with a disk-shaped inhomogeneity is examined. Depending on
the properties of the medium as well as the inhomogeneity �different frequencies in two regions�, distinct spiral
waves including sinklike spirals and dense-sparse spirals, are able to emerge. We find that, unlike the previ-
ously found outward group velocity for spiral waves �normal spirals or antispirals�, the direction of the velocity
of the sinklike spiral wave points inward. A qualitative analysis of the possible mechanism underlying their
formation is discussed, considering the inhomogeneity as a wave sink or source. Numerical simulations per-
formed on other typical reaction-diffusion models confirm this analysis and suggest that our findings are robust
and could be observed in experiments.
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I. INTRODUCTION

Pattern formation and wave propagation in chemical sys-
tems have been investigated extensively because of their po-
tential roles in the understanding of morphogenesis and func-
tional aspects in biological systems �1,2�. As is well known,
spiral waves found in chemical systems, e.g., the Belousov-
Zhabotinsky �BZ� reaction �3–5� and catalytic surface reac-
tions �6�, are relevant for biological functions including ag-
gregation of the social amoeba Distyostelium discoideum �7�
as well as some serious arrhythmias taking place in heart
tissue �8–11�. From this point of view, understanding spiral
dynamics may have potential practical applications that
hence have inspired numerous studies in last decades.

While so far most work has focused on wave dynamics in
homogeneous active media, nonlinear systems with inhomo-
geneous media actually offer an attractive subject for inves-
tigation due to their common occurrence and importance. In
biological media such as heart tissue, there exist defective
regions �e.g., disease cells due to myocardial infarction�
which make the medium nonuniform �12–14�; impurities
�e.g., dust particles, gas bubbles, etc.� and temperature fluc-
tuations are regarded as sources of reaction rate inhomoge-
neity in practical reaction-diffusion �RD� systems �15,16�. In
some situations the inhomogeneity could play an important
role in pattern-forming systems. For instance, the presence of
a heterogeneity, which locally modifies the properties of the
medium, is able to induce an extended target pattern �17–22�;
antispirals have been found in the microheterogeneous BZ
system dispersed in water droplets of a water-in-oil micro-
emulsion �5� and in assemblies of oscillatory cells consisting
of the active intracellular medium separated by inactive ex-
tracellular parts �23�; sink-source pairs of spiral waves are
observed experimentally on spherical surfaces possibly with
inhomogeneous chemical environments �24� and in numeri-
cal simulations if the excitability gradient is applied �25�.

In this paper, we will analyze the spiral dynamics in os-
cillatory systems with a disk-shaped inhomogeneity. Much
attention has been paid to wave propagation as well as the
interaction of spiral waves in composite media with a line
interface �26–33�; the effects of other geometries such as
sharp triangles or ring shapes on chemical wave propagation
are also studied in Refs. �34,35�. Yet little is known about the
spiral behavior in heterogeneous media consisting of an in-
terior region surrounded by an exterior region with different
properties, i.e., the bulk frequency. In this circumstance, we
will show that distinct spiral patterns can arise and their for-
mation greatly depends on the properties of the medium as
well as the inhomogeneity. We notice that one of the spiral
patterns formed, named sinklike spiral waves, quite differs
from the previously found spirals such as normal spirals
�NSs� and antispirals �ASs�. For NSs and ASs, the group
velocity always points outward, while for the sinklike spiral
it points inward. Based on the view of the inhomogeneity
being a wave source or sink, we address the possible mecha-
nism underlying the formation of sinklike spiral patterns and
related features. Further simulations performed on other RD
models indicate that the results presented here are robust.

II. SINKLIKE SPIRAL WAVES IN THE COMPLEX
GINZBURG-LANDAU EQUATION

A general RD system in two dimensions �2D� can be de-
scribed by a set of partial differential equations as

�u

�t
= F�u,�� + D�2u , �1�

where u�x , t� is a space- and time-dependent vector describ-
ing the various chemical species; F is a kind of nonlinear
vectorial function representing the chemical kinetics; D gen-
erally is a diagonalized diffusion matrix, and � is a control
parameter. Close to the supercritical Hopf bifurcation, RD
systems can be reduced to the simple complex Ginzburg-
Landau equation �CGLE� �18,37–39�,
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�W

�t
= �1 − i��W − �1 + i���W�2W + �1 + i���2W , �2�

where W�x ,y , t� is a complex variable describing the ampli-
tude of the pattern modulations. The parameters � and � are
real, representing the nonlinear frequency shift and dissipa-
tive coefficient, respectively. � describes the linear fre-
quency and �2=�2 /�x2+�2 /�y2 denotes the 2D Laplacian
operator. Equation �2� admits a stable spiral solution, which
can be written in polar coordinates as �40�

W�r,�,t� = ��r�ei� = ��r�ei�−	kt+
�+��r��, �3�

where 
= �1 is the “topological charge” of the one-arm
spiral wave. ��r� and ��r� are real functions, which have the
following asymptotic behavior far from the center: d� /dr
→k and �→�1−k2 as r→
. Hence, for large r, the spiral
solution �3� asymptotes to the plane wave solution,

W�r,t� = �1 − k2ei�−	kt+k·r�. �4�

Here, the asymptotic frequency 	k and wave number k are
related via the nonlinear dispersion relation

	k = 	0 + �� − ��k2, �5�

where 	0=�+� is the bulk frequency �i.e., the frequency of
uniform oscillation of the system with k=0� and �−��0
��−��0� represents the positive �negative� dispersion
curve. From Eq. �5�, the group velocity and phase velocity
can be derived analytically as

vgr =
d	k

dk
= 2�� − ��k , �6�

vph =
	k

k
=

	0

k
+ �� − ��k . �7�

The sign of vgr physically determines the direction in which
perturbations are transported, away from or toward the center
of the wave patterns. To some extent, it also correlates with
an organizing center if the direction of the group velocity is
outward. From this point, the centers of NSs �vph�0� and
ASs �vph�0� are both organizing centers since vgr�0 al-
ways holds for both cases �41–45�.

To address spiral behavior in composite oscillatory media,
we consider � as a spatial function,

��r� = �0 for r � R ,

�� for r � R ,
� �8�

where r=��x−xc�2+ �y−yc�2 and �xc ,yc� denotes the center
of the studied medium. The radius R of the center region
�core region� considered here is comparable to the scale of
the medium. Strictly speaking, our numerical results depend
on the value of R; but this dependence is slight if R is beyond
the critical value Rc, which is relatively small compared to
the scale of the whole medium. The effects induced by a
localized inhomogeneity �R is quite small� have been inves-
tigated in our recent paper �21� and thus only the case of
large R will be considered in this paper. It is noticed that the
change of � is essentially equal to modulation of the bulk
frequency since 	0=�+�. In our numerical simulations of

the CGLE, the space and time steps are �x=�y=1.0 and
�t=0.5, respectively. No-flux conditions are imposed at the
boundaries. The initial condition we used is a well-developed
spiral generated from a cross-gradient initial condition for
Re W and Im W �18�.

When ��=0, the difference between the two regions van-
ishes and hence the medium recovers homogeneity. In this
case, whether NSs or ASs will emerge from the same initial
condition is determined uniquely by two parameters � and �.
According to the phase portrait presented in Refs. �41,42�,
with the parameters �=−0.5 and �=−1.4, a cross-gradient
initial value of Re W and Im W will lead to a well-developed
NS whose phase singularity ��W�=0� is located at the center
of the medium �see Fig. 1�a��. A remarkable change of spiral
behavior takes place when an inhomogeneity is introduced in
the center region, e.g., ��=0.2, still with �=−0.5 and �=
−1.4 throughout the medium. After a transient time, a new
kind of spiral waves is formed eventually as illustrated in
Fig. 1�b�. The newly arising features compared to the initial
spiral �Fig. 1�a�� are characterized briefly as follows. The
first point, maybe the most interesting feature, is the inward
�or negative� group velocity of the newly formed spiral
waves. A detailed discussion about this feature is presented
below. Second, the phase velocity vph is changed. For the
initial NS �vph�0�, periodic waves propagate from the spiral
center to the periphery, while now there is an exactly con-
trasting case where waves begin to propagate from the pe-
riphery to the sinklike spiral center as illustrated in the space-
time plot �see Fig. 1�c��. Third, the difference of the wave
number k in the two regions is apparent. As shown in Figs.

FIG. 1. �Color online� Sinklike spiral in CGLE �2� with the
parameters �=−0.5 and �=−1.4. �a� Initial condition, ��=0. �b�
Sinklike spiral waves, ��=0.2, radius R=90, 400�400 system; the
red arrow denotes the direction of the group velocity. �c� Space-time
plot along a horizontal cut at y=400 for a sinklike spiral, radius
R=250, 800�800 system; the red arrow denotes the direction in
which the artificial perturbation is transported. The plots are shown
for the CGLE in the real part of W. The space and time steps are
�x=�y=1.0 and �t=0.5, respectively. No-flux conditions are im-
posed at the boundaries.
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1�b� and 1�c�, the spiral arms in the core region look much
denser than the ones in the outside region.

We would like to emphasize that the group velocity of the
newly formed spiral pattern is inward, unlike previously
found spiral waves �either NS or AS� whose group velocity
points outward. To show this point, a standard procedure to
determine the group velocity of waves as well as a qualita-
tive analysis are performed for the CGLE. We first employ
the standard procedure, simulating the transport of a small
perturbation superimposed on the sinklike spiral pattern, to
find the direction of the group velocity. To show this more
clearly, we do this simulation on a much larger system, i.e.,
800�800 grid points with R=250. As indicated by the red
arrow in Fig. 1�c�, the small perturbation artificially intro-
duced is found to be transported toward the center of the
newly formed spiral pattern. For this reason, we call it a
sinklike spiral wave. Alternatively, from Eq. �6� or Eq. �7�,
we find that, to determine the sign of the group or phase
velocity, it is beneficial to know the sign of the wave number
k and the frequency 	k. As Eq. �4� indicates, the sign of
these two quantities can be found if we know whether Im W
is ahead of or behind Re W. Explicitly, for a snapshot of
Im W and Re W at any time �for example, Figs. 2�a�, 2�c�,
and 2�e��, it is straightforward to show that Im W is behind
Re W, implying k�0, and vice versa; similarly for the mo-
tion of a single point for Im W and Re W �for instance, Figs.
2�b�, 2�d�, and 2�f��, Im W is behind Re W, implying 	k
�0, and vice versa. Note that in a plot of Im W or Re W
versus x, “ahead of” means “to the right of” if the waves
travel in the positive x direction �in our case “the positive x
direction” means to the right of the tip location along the
horizontal line, i.e., x�200�; whereas in a plot of Im W or

Re W versus t “ahead of” means “to the left of.” Thus, it is
easy to find the signs of the group and phase velocities for
the plots shown in Fig. 2. For the sinklike spiral wave, we
can see from Fig. 2�a� that Im W is ahead of Re W, indicating
k1�0 �k1 represents the wave number in the inner region�;
similarly from Fig. 2�b� we find that Im W is behind Re W
meaning 	k1�0. Consequently, we finally get vgr
=d	k1 /dk1=2k1��−���0 since ��−���0 and vph
=	k1 /k1�0 in this case, which is in agreement with the
result shown in Fig. 1�c�. As we expect, this simple argument
can also be applied to NSs �see Figs. 2�c� and 2�d�� and ASs
�see Figs. 2�e� and 2�f��. The above conclusion reveals that
the sinklike spiral pattern is an unusual one because it differs
from previously found spirals such as NSs or ASs, whose
group velocity is always positive, vgr�0. One may notice
that this feature is similar to the concave spiral found in
excitable media with parameters in the solitonlike region
�46�. The formation of concave spirals in excitable media is
a result of reflection of slave waves and thus depends
strongly on the boundary conditions; while the resulting sin-
klike spiral is induced by inhomogeneity in the oscillatory
media. Therefore, they are not the same case.

Whether a sinklike spiral is formed or not is determined
by properties of the medium �� ,�� as well as the inhomoge-
neity ����. To demonstrate this point, we further perform
the following numerical tests. As a first case, we still keep
�=−0.5 and �=−1.4 but change the sign of ��, i.e., ��
=−0.2, and in this case ��−�����0. We find that a differ-
ent kind of spiral pattern, called dense-sparse spiral waves,
differing from the sinklike spiral appears �see Fig. 3�a��. Un-
like the case ��=0.2, where ��−�����0, the change of
spiral in this case is more gradual. Although we just change
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FIG. 2. �Color online� Profile of Re W �solid line� and Im W �dashed line� vs time �t� and space �x� for three different spiral patterns.
�a�,�b� Sinklike spiral waves with parameters ��=0.2, �=−0.5, and �=−1.4; �−��0. From �a� and with Eq. �4�, we find k1�0. Similarly,
according to �b� and with Eq. �4�, we get 	k1

�0. Using Eqs. �6� and �7�, we finally get vph�0 and vgr�0. This conclusion reveals that the
sinklike spiral pattern is an unusual one because it differs from previously found spirals such as NSs or ASs, whose group velocity is always
positive, vgr�0 �see below�. �c�,�d� NS with the parameters ��=0.0, �=−0.5, and �=−1.4; �−��0. With the same arguments as above,
we get k1�0 and 	k1

�0, which results in vph�0 and vgr�0. �e�,�f� AS with the parameters ��=0.0, �=−0.5, and �=1.0; �−��0.
Analogously, we find k1�0 and 	k1

�0. This means for the AS vph�0 and vgr�0. This gives evidence that these simple arguments for NSs
and ASs lead to the same results obtained by other methods �41,44�. x here is the horizontal axis cut at y=200 and its origin is located at the
spiral tip �200, 200� in the present case. Therefore, the positive x direction is to the right of the origin, i.e., x�200.
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the bulk frequency in the center region, the change of the
pattern there is small. In contrast, the change of the spiral
pattern in the outside region where the parameters are kept
the same as the initial ones, is considerable. To be precise,
the spiral arms in the outside region become denser com-
pared with the ones in the center region. In the second test,
we modify the properties of the medium. For instance, we
adopt �=0.3 and �=1.4 satisfying �−��0. In this situa-
tion, we find that the oscillation bulk frequency in the center
region should be decreased, namely, ���0, if a sinklike
spiral is able to emerge. One may note that in this case ��
−�����0 still holds. However, this condition ���−����
�0� is not sufficient to generate sinklike spiral patterns un-
less �� is not too small. For ��−�����0, but with a too
small ��, another kind of wave pattern �sparse-dense spiral
waves� is generated and in this case the spiral arms in the
center region are denser than the ones in the outside region,
as shown in Fig. 3�b�. This feature is in contrast to the dense-
sparse case. Thus to form the sinklike spiral, in addition to
��−�����0, �� should be over a critical value that de-
pends on the system parameters �� ,��.

To give a clearer picture, we propose the phase diagram of
the types of solution in the ��−�� vs �� plane for the CGLE
system in Fig. 4. One finds that the results shown in the
phase diagram are in agreement with the above statements.
Explicitly, sinklike as well as sparse-dense spiral waves are
observed in the regions in which ��−�����0 is satisfied;
whereas dense-sparse spiral waves are observed in the re-
gions where ��−�����0 holds. In addition to these kinds
of waves, other complicated wave patterns, for instance wave
breaks, wave blocks at the interface, etc., are also found.

In Fig. 5, we show the dependence of the frequency 	k1
and absolute wave number �k1� in the center region on �� for
two different cases: �−��0 and �−��0. For �−��0, we
find that there is a linear dependence of 	k1 on �� and a
slight change of �k1� if we decrease �� for ���0 �see Figs.
5�a� and 5�b��. This case corresponds to the dense-sparse
spiral. In contrast, for ���0, 	k1 has almost no change and
�k1� depends linearly on ��, which corresponds to the sin-
klike spiral. This kind of dependence is similar to the case
for �−��0 �see Figs. 5�c� and 5�d��, but one should change
the sign of ��.

III. SINKLIKE SPIRAL WAVES IN THE FITZHUGH-
NAGUMO MODEL

Sinklike spiral waves are expected to be reproduced in
oscillatory RD systems close to the supercritical Hopf bifur-
cation. Numerical simulations are carried out in the standard
FitzHugh-Nagumo �FHN� model �47�

�u

�t
= u −

u3

3
+ v + Du�

2u

�v
�t

= ��u − �v + �� + Dv�
2v , �9�

where ��0 is the ratio between the inhibitor variable v and
active variable u. � and � are two other control parameters
that completely determine the number of fixed points �u
−u3 /3+v=0 and ��u−�v+��=0�. For the sake of simplicity,
we will consider only the case where a unique fixed point
exists. For 0���1, we get the fixed point �uss ,vss� and a
critical value �hc= �1−uss

2 � /�. Linear stability analysis shows
that, if the fixed point exhibits limit cycle behavior, the fol-
lowing condition should be met: ���hc. Following any one
of Refs. �18,37,41�, one can construct the relation between
the parameters �, �, and � in the CGLE and the parameters
�, �, and � in the FHN model,

� =
1 − � + �uss

2

���1 − uss
2 � − �2�1 − uss

2 �2
, �10�

� =
3 − 3� − 7uss

2 + 3�uss
4

3� + 3�uss
2 − 3

� �

�1 − uss
2 ��1 − � + �uss

2 �
,

�11�

FIG. 3. �Color online� Two other distinct spiral patterns medi-
ated by the inhomogeneity: �a� dense-sparse spiral waves, ��
=−0.2, �=−0.5, and �=−1.4; �b� sparse-dense spiral waves, ��
=−0.02, �=0.3, and �=1.4. The red arrow denotes the direction of
the group velocity. The other parameters are chosen the same as
Fig. 1.
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FIG. 4. �Color online� Phase diagram of the CGLE system for

��−�� vs ��. Full triangles denote sinklike spiral waves and empty
triangles represent sparse-dense spiral waves; while full squares de-
note dense-sparse spiral waves and empty squares represent other
complicated wave patterns �for instance, wave breaks, wave blocks
at the interface, etc.�, which are beyond the scope of the present
study. �=0 is kept constant and the initial condition of a cross-
gradient value of Im W and Re W is employed to calculate this
phase diagram.
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� =
1 − uss

2

��1 − uss
2 �/� − �1 − uss

2 �2

� − 1

� + 1
, �12�

where �=Dv /Du, uss= ���1+9�2−3��2/3−1� / ��1+9�2

−3��1/3, and vss= �uss+�� /�. For convenience, we take �
=1.0 ��=0.0�. To keep the parameter � constant in the whole
medium and introduce only the variation reflected by � for
the FHN model, we rewrite � and � as a spatial-dependent
piecewise function in the following manner:

� = ��2 for r � R ,

�1 for r � R ,
� �13�

and

� = ��2 for r � R ,

�1 for r � R .
� �14�

Here �1, �1, �2, and �2 satisfy ���1 ,�1�=���2 ,�2� and the
only change can be written as

� = ��0 for r � R ,

�0 + �� for r � R ,
� �15�

which is quite similar to the above case where we vary the
parameter � in the CGLE. As an example, we set �1
=0.2975, �1=0.0, �2=0.30, and �2=0.024 and in this situa-
tion the corresponding � and �� are equal to −0.6507 and
0.0068, respectively. Figure 6�a� shows a sinklike spiral in
the nonuniform FHN model with the above parameters.
Keeping the same values of � and �, we find that dense-
sparse spiral waves will emerge if we alter the sign of ��, as
shown in Fig. 6�b�.

It should be pointed out that, for the FHN model, sinklike
spiral waves could be observed if ��−�� ���0 is satisfied.
At first glance, this seems to contrast with the condition un-
der which sinklike spiral waves emerge in the CGLE system;
however, they are in principle coincident, which will be clear
if we write out the bulk frequency for both systems explic-
itly. It has been shown that for the RD system the bulk fre-
quency is as follows �41�:
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FIG. 5. �Color online� Dependence of frequency and wave number in the center region on �� for �−��0 and �−��0, respectively.
�a� Dependence of frequency in center region on �� with the parameters �=−0.5, �=−1.4, and R=90 for the squares and solid line and 

for the circle and solid line. �b� Dependence of wave number in center region on ��. The parameters are the same as in �a� for the squares
and solid line. The triangles and solid line describe the relation between wave number and �� via Eq. �24�. �c� Similar to �a� but with
different parameters �=0.3, �=1.4, and R=90 for the squares and solid line and 
 for the circles and solid line. �d� Similar to �b� but with
the parameters as in �c� for the squares and solid line.

FIG. 6. �Color online� �a� Sinklike spiral pattern and �b� dense-
sparse spiral waves in the nonuniform FHN model. �a�
��1 ,�1 ,�2 ,�2�= �0.2975,0.0,0.300,0.024� and in this case ��
=0.0068. �b� ��1 ,�1 ,�2 ,�2�= �0.300,0.024,0.2975,0.0� and in this
case ��=−0.0068. Other parameters are �=3.31, Du=Dv=0.005,
and R=40. The red arrow denotes the direction of the group veloc-
ity. Numerical simulations are carried out on 200�200 grid points
employing the explicit Euler method. The space and time step are
�x=�y=0.5 and �t=0.02, respectively. No-flux conditions are im-
posed at the boundaries. The initial condition is a cross-gradient
value of u and v.

SINKLIKE SPIRAL WAVES IN OSCILLATORY MEDIA… PHYSICAL REVIEW E 77, 056207 �2008�

056207-5



fbulk
RD = 	Hopf −

�

�
�� + �� , �16�

where 	Hopf denotes the Hopf oscillation frequency for the
RD system and � /� is a positive parameter. Equation �16�
indicates that �fbulk

RD �−��, which is contrast to the case of
the CGLE system where �fbulk

CGLE���. Therefore, the inho-
mogeneity introduced by �� for the RD system �e.g., the
FHN model� is regarded as a wave sink when ��−����
�0 and a wave source when ��−�����0. This is the rea-
son that we could observe sinklike spiral waves �dense-
sparse spiral waves� if ��−�����0 ���−�����0� for the
FHN system.

IV. THEORETICAL ANALYSIS

We so far have given a detailed discussion concerning the
conditions under which sinklike spiral patterns could
emerge; further questions including the possible mechanism
of formation as well as the features formed may be addressed
with theoretical considerations.

Substituting �3� into the CGLE �2�, we get �18,21�

��

�t
= � − �3 + �2� − �����2 − ��2 � � · �� + ��2�� ,

�17�

��

�t
= − ��r� − ��2 + �2� − �����2

− �−1�2 � � · �� + ��2�� . �18�

Assuming that � is stationary ��� /�t=0� and eliminating �2

between Eqs. �17� and �18�, we obtain

��

�t
= − ��r� + 
0 + ��2� + 
0

−1�����2 + 2��−1 � � · ��

− 
0
−1��−1�2� , �19�

where 
0=−�, �=1+��, and �=���−��. After applying
the Hopf-Cole transformation

� = 
0�−1��ln Q − ln ��

to Eq. �19�, we find a new equation that Q should obey,

�Q

�t
= ����−2 + �2 − �1 + p2��−1�r

2��Q − p��r�Q , �20�

where p=�−1
0
−1�. If the solution has rotational symmetry

�e.g., the spiral wave solution�, Q must be of the form �18�

Q�r,�,t� = q�r�e�p���−	t��. �21�

This expression is substituted into Eq. �20� to give an eigen-
value problem

�q�r� = Ĥq�r� �22�

in which

� = − �−2��
0
−1	 + 1�, Ĥ = �r

2 − �U�r� + �U�r�� ,

U�r� = − p2r−2 + �1 + p2��−1�r
2� ,

�U�r� = �0 for r � R ,

�U for r � R ,
�

where �U=�−2
0
−1���. While Eq. �22� is generally difficult

to solve, it is still possible to give some discussion about
what the equation implies. First, it clearly shows that the
inhomogeneity modifies the potential U�r�→U�r�+�U�r�.
This modification changes Ĥ and it turns out to affect the
eigenvalue related to 	 and thus k via the dispersion relation.
In other words, due to the existence of �U�r�, the spatial
distribution function q�r� varies in two adjacent regions. Sec-
ond, the sign of �U may be extremely important for pattern
formation since it will locally increase ��U�0� or decrease
��U�0� the potential. In the framework of the phase dy-
namics approximation �18,19�, it has been shown that the
center region acts as a wave source if �U�0 and a wave
sink if �U�0. Our numerical findings suggest that a
necessary condition for sinklike spiral formation is �U�0
���−�����0�, which means the region enclosing the spiral
center acts as a wave sink; for dense-sparse spiral patterns
we find �U�0 ���−�����0�, which describes the center
region as a wave source.

Understanding the formation of dense-sparse spiral waves
may turn out to shed light on the formation of sinklike spiral
waves; so let us first consider the former structure with the
parameters �=−0.5 and �=−1.4 and ��=−0.2, which indi-
cates ��−�����0 and �U�0. In these circumstances, the
core region �r�R� represents a wave source and from the
uniform initial conditions an extended target pattern will be
created �18,19�. To be precise, in contrast to the traveling
wave patterns in the outside region �r�R�, a uniform oscil-
lation occurs inside the core region, where no waves are
observed. This target pattern is encountered frequently in na-
ture, experiments, and simulations. If there is initially a spi-
ral in the core region, we expect that it is possible to main-
tain its original rotating behavior since the core region
exhibits self-oscillation. Due to the difference of the bulk
frequency in the two neighboring regions, however, a self-
modulation of the initial spiral must be observed. According
to Fig. 5�a�, one can see that the asymptotic frequency 	k1
linearly depends on �� ����0 or ���0 in Fig. 5�c��,
which implies that the whole system is entrained by the core
region. It is hence safe to say that wave-mediated synchro-
nization of the adjacent region is guaranteed, which means
	k1=	k2. With the help of dispersion relation �5�, it is easy
to find the relation of the wave numbers in two regions,

�k1� − �k2� = −
��

� − �
��k1� + �k2��−1, �23�

where k1 and k2 denote the asymptotic wave numbers in the
inner �r�R� and outer �r�R� regions, respectively. Equa-
tion �23� clearly shows that, if ��−�����0, i.e., the het-
erogeneity acts as a wave source, the absolute wave number
�k1� is always smaller than the one �k2� in the other region
�r�R�. In this respect, we will observe a spiral structure
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with sparse arms in the core region and dense arms in the
outside region as illustrated in Fig. 3�a�.

Consequently, it is expected that, compared to the outside
region, the spiral arms in the core region are denser if
��−�����0; see Figs. 1�b� and 3�b�. Considering �k1�2
� �k2�2 for the sinklike spiral, Eq. �23� can be further reduced
as

�k1�2 = −
��

� − �
. �24�

In Figs. 5�b� and 5�d�, we compare the numerical result
�squares, solid line� with the theoretical predication �tri-
angles solid line� via Eq. �24�. Reasonable agreement is
found. The interpretation of the possible mechanism under-
lying the formation of sinklike spiral structures can be made
quite analogously with the discussions above for dense-
sparse spiral waves. In the case of sinklike spiral pattern
formation, if the initial condition is uniform, visible traveling
waves will be able to emerge in the core region. However,
the case may be remarkably changed when an initial spiral is
put in the center region because of the competition between
waves generated by the initial spiral center and by the rotat-
ing waves in the outside region. This viewpoint will become
very clear provided that we adopt a cross-gradient initial
condition rather than a well-developed spiral like Fig. 1�a�.
Figure 7 shows the competition between these two kinds of
waves. Initially, there are two different waves appearing in
the center region and close to the interface, respectively. As
time elapses, waves generated by the initial spiral center are
gradually taken over by rotating waves in the outside region.
Numerical findings also demonstrate that the frequency of

the sinklike spiral waves formed is smaller �greater� than that
of spiral waves when �� is introduced in the whole medium
�i.e., R=
� for �−��0 ��−��0� �see Figs. 5�a� and 5�c��.
This competition rule is the same as the case where a com-
petition among two or more spirals takes place �16,36�.

V. SINKLIKE SPIRAL WAVES IN THE OREGONATOR
MODEL

To show that our observed results are robust and could be
realized experimentally, numerical experiments are also per-
formed on the Oregonator model, which is regarded as a
good candidate for describing the light-sensitive BZ reaction.
Recently, a recipe resulting in small-amplitude oscillation in
a gel has been provided in Ref. �23�. This makes it possible
to study the light response to the BZ reaction close to the
Hopf bifurcation. Our numerical experiments are done with
the reduced two component Oregonator model with oscilla-
tory properties �48,49�,

�u

�t
=

1

�
	u − u2 − �fv + ��r��

u − q

u + q

 + Du�

2u ,

�v
�t

= u − v + Dv�
2v , �25�

where u and v represent the concentrations of the autocata-
lytic species HBrO2 and the catalyst, respectively. The pa-
rameter �, similar to the one appearing in the FHN model,
describes different reaction rates or time scales for the two
species u and v; f and q are two other parameters. The effect
of light on this reaction can be described by the additional
term ��r� adopted in our simulations in the following form:

��r� = ��0 for r � R ,

�0 + �� for r � R .
� �26�

�0 denotes the background light intensity and the difference
between the two subregions is reflected by ��. It is gener-
ally true that the frequency of chemical waves will be shifted
as the light is switched on �50,51�; for the oscillatory light-
sensitive BZ reaction, target patterns can be generated by
nonuniform illumination, which has been experimentally
studied in Ref. �22�. In our numerical case for the specific
form of ��r� as Eq. �26�, the center region plays the role of
a wave source if ���0 and a wave sink if ���0.

According to the above discussions on sinklike spiral for-
mation in the CGLE and the FHN model, we may predict
that the sinklike spiral �dense-sparse spiral� can occur if
���0 ����0� since the center region represents a wave
sink �wave source�. Numerical experiments indeed confirm
this prediction; see Figs. 8�a� and 8�b�. To be more precise,
sinklike spiral waves are able to form when the center region
is illuminated. The process of this kind of formation is al-
most the same as in the CGLE and the FHN model.

The examples of sinklike spiral waves so far discussed, in
the CGLE, Fitzhugh-Nagumo, and Oregonator models, are
limited to the sets of parameters that are in the vicinity of the
Hopf bifurcation point. With these sets of parameters, the
system exhibits sinusoidal oscillation with relatively small

FIG. 7. Competition between spiral waves in the interior region
and rotating waves in the outside region. �a� Snapshots for sinklike
spiral pattern formation. The time interval between snapshots is
unequal. �b� A partial space-time plot for �a� �0� t�800�. The pa-
rameters are �=−0.10, �=−1.4, ��=0.10, and R=90. It is found
that one type of wave is initially in the center region and the other
is close to the interface, driven by the rotating waves in the outside
region. It shows that the former is eventually suppressed by the
latter.
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amplitude �see Fig. 8�c��. Actually, a sinklike spiral wave is
able to emerge even when the system is driven far way from
the Hopf bifurcation point �in other words, the system exhib-
its relaxation oscillation�. To show this point, we adopt an-
other set of parameters with small � �e.g., �=0.2� with typi-
cal relaxation oscillations �see Fig. 9�c��. In this situation,
sinklike and dense-sparse spiral waves sustained by nonuni-
form light intensity arise, as shown in Figs. 9�a� and 9�b�.
These numerical experiments again imply that the results
presented here are quite robust and might be observed in
experiments, such as the light-sensitive BZ reaction.

VI. CONCLUSION

We have examined spiral wave propagation in oscillatory
systems with a disk-shaped inhomogeneity. Depending
strongly on the properties of the medium and inhomogeneity,
spiral waves can exhibit distinct behavior. For instance, an
interesting spiral pattern called a sinklike spiral can emerge
when the region enclosing the spiral center acts as a wave
sink. In addition to sinklike spiral waves, other spiral pat-
terns can also emerge. The possible mechanism underlying
their formation is discussed based on the view of the inho-
mogeneity being a wave source or sink. In particular, we
argue that the formation of the sinklike spiral is the result of

the competition between the initial spiral waves in the center
and rotating waves in the outside region. Further numerical
simulations performed with various models such as the FHN
and Oregonator models indicate that formation of sinklike
spiral patterns is common and robust in nonuniform oscilla-
tory media, where the circular interior region encloses the
spiral tip.

The sinklike spiral found in this paper is worth mention-
ing because it differs considerably from previously found
spiral waves such as NSs and ASs in the group velocity. For
both NSs and ASs, the direction of the group velocity is
away from the spiral center; while for sinklike spiral waves,
it points toward the center. On the other hand, our findings
strongly suggest that the effect of the inhomogeneity should
not be neglected and in some cases even a weak inhomoge-
neity is capable of inducing remarkable effects. Finally, we
hope our results will be realized in experiments, which
would make our results more interesting from a practical
point of view.
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FIG. 8. �Color online� Sinklike and dense-sparse spiral patterns
mediated by nonuniform light intensity in the Oregonator model. �a�
�0=0.0001, ��=0.000 08, sinklike spiral. �b� �0=0.0001, ��
=−0.000 05, dense-sparse spiral. �c� Time history of the activator u
and the inhibitor v of the Oregonator model. It shows that the sys-
tem exhibits small-amplitude nearly sinusoidal oscillations. The
other parameters are �=0.75, q=0.002, f =0.95, Du=0.001, Dv
=0.0001, and R=60. The red arrow denotes the direction of the
group velocity. Numerical simulations are performed on 256�256
grid points employing the explicit Euler method. The space and
time steps are �x=�y=0.5 and �t=0.01, respectively. No-flux con-
ditions are imposed at the boundaries. The initial condition is a
cross-gradient value of u and v.

FIG. 9. �Color online� Sinklike and dense-sparse spiral patterns
mediated by nonuniform light intensity in the Oregonator model, far
from the Hopf bifurcation point. �a� �0=0.000 01, ��=0.0002,
sinklike spiral. �b� �0=0.000 11, ��=−0.0001, dense-sparse spi-
ral. �c� Time history of the activator u and the inhibitor v of the
Oregonator model. It shows that the system exhibits anharmonic
relaxation oscillation. The other parameters are �=0.20, q=0.002,
f =0.95, Du=0.001, Dv=0.001, and R=30. The red arrow denotes
the direction of the group velocity. Numerical simulations are per-
formed on 128�128 grid points employing the explicit Euler
method. The space and time steps are �x=�y=0.5 and �t=0.002,
respectively. No-flux conditions are imposed at the boundaries. The
initial condition is a cross-gradient value of u and v.
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